
Algebra, Logic, Geometry:
at the Foundation of CS

Tony Hoare
Honorary Professor at Griffith University

ICFEM 13 November 2018



Theses

• Foundations of the Theory of Programming can be taught as an aid to 
practical programming throughout a degree course in Computing 
Science.

• A Program Development Environment for teaching should provide 
features similar to those of modern industrial tool chains. 

• The level of Math required in the first practical course is that of High 
School courses in Algebra, Logic, and Geometry.



Summary

1. Review of Boolean Algebra

2. Deductive Logic

3. Spatio-temporal Logic

4. Sequential Composition

5. Concurrent Composition

6. Unifying Theories of Programming



1.Review of Boolean Algebra
relevant also for Mathematics, and Philosophy

and in CS for Hardware Design, and Program Development.



George Boole (1815-1864)

• Professor of Mathematics at Queen’s College Cork, 
Ireland

• Book:  1854 An Investigation of the Laws of Thought

proposed the binary algebraic operators not, and, or, 

and a binary comparison for predicates: ≤ (implies).

These are the foundation for a deductive logic of 
propositions (𝑝, 𝑞, 𝑟, … )



George Boole (1815-1864)

• Professor of Mathematics at Queen’s College Cork, 
Ireland

• Book:  1854 An Investigation of the Laws of Thought

proposed the binary algebraic operators not, and, or, 

and a binary comparison predicate: ≤ (implication)

as the foundation of a deductive logic of propositions 
(𝑝, 𝑞, 𝑟, … )



Disjunction:  ∨ (‘or’)

• Axioms:  ∨ is associative, commutative and idempotent

• Theorem:   ∨ distributes leftward through  ∨

𝑝 ∨ 𝑞 ∨ 𝑟 = 𝑝 ∨ 𝑟 ∨ 𝑞 ∨ 𝑟

• Proof:  𝑟ℎ𝑠 = 𝑝 ∨ 𝑟 ∨ 𝑞 ∨ 𝑟 assoc

= 𝑝 ∨ 𝑞 ∨ 𝑟 ∨ 𝑟 comm

= 𝑝 ∨ 𝑞 ∨ 𝑟 ∨ 𝑟 assoc

= 𝑝 ∨ 𝑞 ∨ 𝑟 idem

= 𝑙ℎ𝑠 assoc

Corollary:  Rightward distribution (follows by comm)



Geometry: 𝑝 ∨ 𝑞

𝑝 𝑞

Venn diagram



Comparison: 𝑝 ≤ 𝑟

• Define 𝑝 ≤ 𝑟 as     𝑟 = 𝑝 ∨ 𝑟

• 𝑝 implies 𝑟 , 𝑝 is stronger than 𝑟, 𝑟 is weaker than 𝑝

• Geometry:

𝑝

𝑟



∨ is a weakening operator

• Theorem: 𝑝 ≤ 𝑝 ∨ 𝑟

• Proof:   𝑝 ∨ 𝑟 = (𝑝 ∨ 𝑝) ∨ 𝑟 by idempotence

=    𝑝 ∨ (𝑝 ∨ 𝑟) by association

The theorem follows by definition of  ≤

• Corollary: 𝑝 ≤ 𝑟 ∨ 𝑝 by commutation

Henceforth we omit brackets around associative operators, and proofs of 
theorems that follow by commutation.



2.Deductive Logic
Relevant for all branches of mathematics, science and engineering



The Aristotelian Syllogism

• If  the two antecedents above the line have been proved

the consequent below the line is also provable

• To use a proof rule:          first prove the antecedents

and thereafter assume the consequent whenever required

• To validate a proof rule:   first assume the antecedents 

and then use algebra prove the consequent 

𝐴𝑙𝑙 𝑚𝑒𝑛 𝑎𝑟𝑒 𝑎𝑛𝑖𝑚𝑎𝑙𝑠 𝐴𝑙𝑙 𝑎𝑛𝑖𝑚𝑎𝑙𝑠 𝑎𝑟𝑒 𝑚𝑜𝑟𝑡𝑎𝑙

𝐴𝑙𝑙 𝑚𝑒𝑛 𝑎𝑟𝑒 𝑚𝑜𝑟𝑡𝑎𝑙



Aristotle 384-322 BC.

Founded the Lyceum in Athens, and lectured on 

sciences: physics, biology, zoology; 
aesthetics:   poetry, theatre, music;
ethics: politics, government, rhetoric; 
philosophy: metaphysics, logic, linguistics.

Recognised as the originator of logic and of classificatory 
biology, in which syllogisms are suited for deducing 
consequences from its classifications. 



Rule of Proof by Cases

Validation:   Assume the antecedents:  𝑟 = 𝑝 ∨ 𝑟 and  𝑟 = 𝑞 ∨ 𝑟

𝑟 = 𝑟 ∨ 𝑟 the idempotence axiom

= 𝑝 ∨ 𝑟 ∨ 𝑞 ∨ 𝑟 by substitution for each 𝑟

= 𝑝 ∨ 𝑞 ∨ 𝑟 by distribution of 𝑟 through ∨

The conclusion follows by the definition of  ≤

𝑝 ≤ 𝑟 𝑞 ≤ 𝑟

𝑝 ∨ 𝑞 ≤ 𝑟



Ordering: ≤
• Theorem:  ≤  is a partial order

________________

reflexive: 𝑝 ≤ 𝑝 by idempotence

transitive:  
𝑝 ≤ 𝑞 𝑞 ≤ 𝑟

𝑝 ≤ 𝑟
by  association

antisymmetric:
𝑝 ≤ 𝑞 𝑞 ≤ 𝑝

𝑝 = 𝑞
by  commutation



Covariance (monotonicity) of  ∨

Theorem:
𝑝 ≤ 𝑞

𝑝∨ 𝑟 ≤ 𝑞 ∨ 𝑟
also            

𝑝 ≤ 𝑞

𝑟 ∨ 𝑝 ≤ 𝑟∨ 𝑞

Proof : 𝑝 ≤ 𝑞 ≤ 𝑞 ∨ 𝑟 and 𝑟 ≤ 𝑞 ∨ 𝑟

The result follows by the proof rule for cases

A covariant operator preserves the ordering of each of its operands 

‘strengthening a part can only strengthen the whole product’

(and weakening similarly)



3.Spatio-temporal Logic
for non-metric reasoning about what happens in space and in 
time



William of Occam (1287-1347)

• Franciscan friar, Scholar at Merton College Oxford

• excommunicated (1328) rehabilitated (1359)

• Occam’s razor: entities should not be postulated 
beyond necessity 

• Book: Summa Logicae (1323)

with operators for implication, disjunction, 
conjunction, causation; and temporal operators while
(|), and then (;)



Geometry

p

interval in time

extent 
in space



Geometry of  p;q

p

qp;q

time

space



Geometry of  (p|q) 

p

q

space



Geometry of  (p|q) 

p

q

space
locations

events



Geometry of  p;q

p

qp;q

time

space



The small print

• A term is defined only if all its operands are defined

• 𝑝 ∨ 𝑞 and  𝑝 ≤ 𝑞 are defined only if  𝑝 and  𝑞 have the same region

• (𝑝; 𝑞) and (𝑝|𝑞) are defined only if their regions are disjoint. 

• events(𝑝; 𝑞) =  events(𝑝|𝑞) =  events(𝑝) union events(𝑞)

• and the same for intervals and extents.



4. Sequential Composition
The algebraic axioms for sequential composition validate the relevant proof rules



Algebraic Axioms for  ;

• [ ] describes a region in which nothing happens (aka null, skip)
• padding can have any extent or duration, consistent with its context

• ; is associative and has unit  [ ]

• ; distributes through  ∨ (both leftward and rightward):

e.g., 𝑝; 𝑞 ∨ 𝑞′ = 𝑝;𝑞 ∨ 𝑝;𝑞′

Distribution justifies giving  ;  a precedence stronger than  ∨



Proof by cases

• Theorem:  
𝑝;𝑞 ≤ 𝑟 𝑝′;𝑞 ≤ 𝑟

𝑝∨ 𝑝′ ;𝑞 ≤ 𝑟

• Assume  (1) 𝑟 = 𝑝;𝑞 ∨ 𝑟 and    (2) 𝑟 = 𝑝′;𝑞 ∨ 𝑟

Therefore       𝑟 = 𝑝;𝑞 ∨ 𝑝′;𝑞 ∨ 𝑟 substitute (2)  in  (1)

= 𝑝 ∨ 𝑝′ ;𝑞 ∨ 𝑟 ;  distributes thru  ∨

=  consequent of the rule      (by definition of ≤ )



Proof rule for sequential composition

• Theorem:  
𝑝;𝑞 ≤𝑚 𝑚;𝑟 ≤ 𝑡

𝑝;𝑞;𝑟 ≤ 𝑡

• Assume (1) 𝑚 = 𝑝;𝑞 ∨ 𝑚 and     (2) 𝑡 = 𝑚;𝑟 ∨ 𝑡

Therefore   𝑡 = 𝑝;𝑞 ∨ 𝑚 ;𝑟 ∨ 𝑡 substitute  (1)  in  (2) 

= 𝑝;𝑞;𝑟 ∨ (𝑚;𝑟 ∨ 𝑡) distribute 𝑟 thru  ∨

= 𝑝;𝑞;𝑟 ∨ 𝑡 substitute back by  (2)



The theorem      
𝑝;𝑞 ≤𝑚 𝑚;𝑟 ≤ 𝑡

𝑝;𝑞;𝑟 ≤ 𝑡

has corollaries
𝑝 ≤ 𝑚 𝑚; 𝑟 ≤ 𝑡

𝑝; 𝑟 ≤ 𝑡

𝑝; 𝑞 ≤ 𝑚 𝑚 ≤ 𝑡

𝑝; 𝑞 ≤ 𝑡

Proof: substitution of  [ ]  for  𝑞 in the first, and for  𝑟 in the other

Rules of consequence



Hoare triple

Consider the proposition  𝑝;𝑞 ≤ 𝑟 .  

𝑝 describes the interval from the start of 𝑟 to the start of  𝑞 , 
and 𝑞 describes the interval from the end of  𝑝 to the end of  𝑟, 

then 𝑟 correctly describes the whole of (𝑝;𝑞)

Define    𝑝 𝑞 𝑟 as 𝑝;𝑞 ≤ 𝑟



Verification Rules for ;

• By substitution of the definition of the triple into the Proof Rule for  ; 

𝑝 𝑞 𝑚 𝑚 𝑟 {𝑡}

𝑝 𝑞;𝑟 {𝑡}
which is the Hoare rule for  ; 

• The two corollaries give:

𝑝 𝑞 𝑚 𝑚 ≤ 𝑡

𝑝 𝑞 {𝑡}

𝑝 ≤𝑚 𝑚 𝑟 {𝑡}

𝑝 𝑟 {𝑡}

which are the Hoare rules of Consequence 



In Praise of Algebra

• Simple, elegant, reusable, tractable by people and by machines, 

• Algebraic transformation is essential in the top-down design of 
application system architecture by successive refinement

• They are also used in compilation, optimisation, refactorization, 
obfuscation, and automatic generation of program code

• Algebra unifies theories which underlie a range of programming tools, 
It is clearly essential for their correct interworking 

• and for the introduction of Theory into Computer Science education



Milner transition    𝑟՜
𝑝
𝑞

• One way of executing  𝑟 is to execute  𝑝 first, saving  𝑞 as a 
continuation for subsequent execution

• Define 𝑟՜
𝑝
𝑞 as 𝑝;𝑞 ≤ 𝑟



Operational rules for  ;

𝑟 ՜
𝑝
𝑚 𝑚՜

𝑞
𝑡

𝑟
𝑝;𝑞

𝑡
the Milner rule for  ;

• The two corollaries are

𝑚 ≤ 𝑟 𝑚՜
𝑞
𝑡

𝑟 ՜
𝑞
𝑡

𝑟 ՜
𝑝
𝑚 𝑡 ≤𝑚

𝑟 ՜
𝑝
𝑡

i.e., Milner’s ‘rules of structural equivalence’ , with  ≡  replaced by  ≤



5. Concurrent Composition
|  has the same laws as  ;  .  An additional Interchange axiom 
permits a concurrent program to be executed sequentially by 
interleaving. 



Algebraic Axioms for  |

• |  is associative with unit  [ ]

• |  distributes through  ∨

• (𝑝 | 𝑞);(𝑝′ 𝑞′ ≤ (𝑝;𝑝′) | (𝑞;𝑞′) (the interchange axiom)
• The  rhs and the  lhs differ by interchange of operators ;  with  | ,  

• and  of operands 𝑝′ with  𝑞

Theorems: 𝑝;𝑞′ ≤ 𝑝 | 𝑞′ by interchange, with   𝑝′ = 𝑞 = []

𝑞;𝑝′ ≤ 𝑝′ | 𝑞 similarly, with 𝑞′ = 𝑝 = []

Hence 𝑝;𝑞 ∨ 𝑞; 𝑝 ≤ 𝑝 | 𝑞 by the rule for cases



𝑝 𝑞 ; 𝑝′ 𝑞′ ≤ 𝑝;𝑝′ | 𝑞;𝑞′

(𝑝 𝑞);𝑞′ ≤ 𝑝 𝑞;𝑞′ 𝑝′ = []

𝑝; 𝑝′ 𝑞′ ≤ 𝑝;𝑝′ | 𝑞′ 𝑞 = []

𝑞; 𝑝′ 𝑞′ ≤ 𝑝′ | 𝑞;𝑞′ 𝑝 = []

𝑝 𝑞 ;𝑝′ ≤ 𝑝;𝑝′ | 𝑞 𝑞′ = []

All four are proved by substitution of [ ]

They are known as small interchange laws (or frame laws in separation logic)

Hence 𝑝; 𝑞; 𝑞′ ≤ (𝑝 𝑞);𝑞′ ≤ 𝑝 𝑞;𝑞′



Interleaving longer strings

• Let  x,y,z,w,a,b,c,d be characters representing single events

• Let us omit  ;  in strings except for emphasis.  Thus  

xyzw =  x;y;z;w



𝑎𝑏𝑐𝑑 | 𝑥𝑦𝑧𝑤
𝑎;𝑏𝑐𝑑 | (𝑥𝑦;𝑧𝑤)
𝑎 | 𝑥𝑦 ;(𝑏𝑐𝑑 | 𝑧𝑤)
𝑎 | 𝑥;𝑦 ;(𝑏;𝑐𝑑 | 𝑧𝑤)
(𝑎 | 𝑥);𝑦;(𝑏 | 𝑧𝑤);𝑐𝑑

.........
𝑥𝑎𝑦𝑧𝑏𝑤𝑐𝑑

is the 𝑟ℎ𝑠 of interchange

associativity (twice)

interchange

associativity (twice)

small interchange (twice)

........

similarly

Example of Interleaving

>
>
>
>

>

Each step of the proof reduces length of same-coloured strings. 
Termination is assured when this is no longer possible. 



Basic Principle of Concurrent Programming

• Every interleaving which preserves the order of the operands of all  
sequential and of all concurrent compositions is reachable by 
strengthening applications of the interchange axiom.

• first proved for Turing machines by simulation (interpretation)

• a direct algebraic proof (omitted) uses structural induction.



6.Unifying Theories of 
Concurrency
We repeat for concurrent programs the same unification achieved before for 
sequential programming.



Interchange Rule (O’Hearn)

𝑝;𝑞 ≤ 𝑟 𝑝′;𝑞′ ≤ 𝑟′

𝑝 | 𝑝′ ; 𝑞 | 𝑞′ ≤ 𝑟 𝑟′)

The rule tells how to prove a complicated concurrent theorem

by splitting it into two proofs of two much simpler sequential theorems.

Theorem:  This rule is equivalent to the Interchange axiom

Proof: next two slides



The rule implies axiom

𝑝;𝑞 ≤ 𝑟 𝑝′;𝑞′ ≤ 𝑟′

𝑝 | 𝑝′ ; 𝑞 | 𝑞′ ≤ 𝑟 | 𝑟′
(concurrency rule)

Proof:  Replace 𝑟 by 𝑝;𝑞 and 𝑟′ by 𝑝′;𝑞′ throughout 

The antecedents are true by the reflexivity  of  ≤

and the conclusion is:

𝑝 | 𝑝′ ; 𝑞 | 𝑞′ ≤ (𝑝;𝑞) | (𝑝′;𝑞′)

which is the interchange law



The axiom implies the rule

Assume the antecedents of the rule: 𝑝;𝑞 ≤ 𝑟′ and  𝑝′;𝑞′ ≤ 𝑟′

𝑝;𝑞 | (𝑝′;𝑞′) ≤ (𝑟 | 𝑟′) (covariance  of | twice)

𝑝 | 𝑝′ ; 𝑞 𝑞′) ≤ 𝑝;𝑞 | (𝑝′;𝑞′) (interchange axiom) 

So 𝑝 | 𝑝′ ; 𝑞 𝑞′) ≤ (𝑟 | 𝑟′) (by transitivity of ≤)

Therefore  
𝑝;𝑞 ≤ 𝑟 𝑝′;𝑞′ ≤ 𝑟′

𝑝 | 𝑝′ ; 𝑞 | 𝑞′ ≤ 𝑟 | 𝑟′
(the interchange rule)



Proof rule for Concurrent Composition

•
𝑝;𝑞 ≤ 𝑟 𝑝′;𝑞′ ≤ 𝑟′

𝑝 | 𝑝′ ; 𝑞 | 𝑞′ ≤ 𝑟 | 𝑟′
copied from previous slide

•
𝑝 𝑞 𝑟 𝑝′ 𝑞′ {𝑟′}

𝑝 || 𝑝′ 𝑞 || 𝑞′ {𝑟 || 𝑟′}
translated to Hoare triples

•
𝑟 ՜

𝑞
𝑝 𝑟′

𝑞′

𝑝′

𝑟 || 𝑟′
𝑞 || 𝑞′

𝑝 || 𝑝′
translated to Milner  transitions

are all equivalent to the exchange law



Applications to Programming

• Most interpreters and compilers for programming languages follow an 
operational semantics expressed as Milner Transitions.

• Most program analysers and proof tools for sequential languages 
follow a verification semantics expressed as Hoare Triples.

• Many papers in the Theory of Programming prove the consistency 
between these two ‘rival’ theories for particular languages

• Algebra unifies the theories, by proofs which could be understood or 
even discovered under guidance by CS students in their practical 
programming courses.



Acknowledgements to my Colleagues

• at Oxford University: Jean-Raymond Abrial, Richard Bird, Joe Stoy, 
Dana Scott, Bill Roscoe, Steve Brookes, Carroll Morgan

• at Microsoft Research: Jade Alglave, Ernie Cohen, Byron Cook, Rustan
Leino, Matt Parkinson, Jon Pincus

• at Cambridge and Grifffith University: Nada Amin, Zhe Hou 

• my recent coauthors: Bernhard Moeller, Peter O’Hearn, Stephan van 
Staden, Georg Struth, Ian Wehrman, John Wickerson

• my heroes: Bertrand Russell, Edsger W. Dijkstra, Robin Milner

• Jill Hoare and Jonathan Lawrence



Further reading

• Consult my website  www.cl.cam.ac.uk/~carh4/

• Lecture1. Geometric theory of program testing

• Lecture 2. Algebra for program transformation

• Lecture 3 is an early version of today’s lecture

http://www.cl.cam.ac.uk/~carh4/


Limitations of Algebra

• It has insufficient expressive power:  no quantification.

• Logic can also specify and verify interfaces between components of a program.

• It cannot specify basic commands

• Logic specifies basic commands (assignment, input, output, ...)  

• It has no negation: it cannot prove that a formula is not a theorem

• Geometry is a model of both algebra and logic. It provides test cases for incorrect 
programs and counterexamples for false conjectures

• see   https://www.cl.cam.ac.uk/~carh4/

www.Heidelberg-laureate-forum.org/?s=2016

https://www.cl.cam.ac.uk/~carh4/
http://www.heidelberg-laureate-forum.org/?s=2016


Isaac Newton (1642-1726)
Communication with Richard Gregory (1694)

“Our [my] specious [falsely convincing] algebra [the infinitesimal 
calculus] is fit enough to find out [has some heuristic value], but 
entirely unfit to consign to writing and commit to posterity [it cannot 
and must not be published].” 

(with translation to Modern English)

Newton’s  proofs were geometric, establishing properties of the 
Keplerian ellipses that describe the orbits of the planets



Bertrand Russell (1872 – 1970)

The method of “postulating” what we want has many advantages;  
they are the same as the advantages of theft over honest toil.  Let 
us leave them to others and proceed with our honest toil.

Introduction to Mathematical Philosophy.

Russell then refused to postulate the existence of real numbers 
(such as the sqrt of 2), and proceeded to model them by the 
Dedekind cut. 



Gottfried Leibniz (1646-1716)

• calculemus Let us calculate  (symbolically)  


